(+)-N-FORMYLNORNANTENINE, A NEW APORPHINE ALKALOID FROM CYCLEA ATJEHENSIS

Bamrung Tantisewie, 'Tharadol Pharadai, ${ }^{1}$ Mataya Pandhuganont, ${ }^{1}$ Helene Guinaudeau,*.2 Alan J. Freyer, and Maurice Shamma*
Department of Chemistry, The Pennsylvania State University, University Park. Pennsylvania 16802

Abstract

Cyclea atjehensis (Menispermaceae), of Thai origin, has yielded the new aporphine $(+)$-N-formylnornantenine $[\mathbf{1}]$ which in CDCl_{3} solution exists as a mixture of isomers $\mathbf{1 a}$ and $\mathbf{1 b}$.

Cyclea atjebensis Forman (Menispermaceae) is a vine native to Thailand where its extracts are sometimes used in folk medicine for the treatment of stomach disorders. ${ }^{3}$

Presently, an investigation of the alkaloidal contents of this plant has yielded a number of monomeric and dimeric bases. It is the monomeric bases that will be dealt with in this paper.

Five alkaloidal monomers were isolated, which proved to be the pavinanes $(-)$-norargemonine and (-)-argemonine (1), and the aporphines (+)-laurotetanine, $(+)$-nornantenine, and (+)-N-formylnornantenine (2). This represents the first recorded occurrence of pavines within a member of the Menispermaceae. Of the five alkaloids, only (+)- N -formylnornantenine is new.

1

[^0](+)-N-Formylnornantenine [1], $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}$, was obtained as colorless crystals, $\lambda \max (\mathrm{MeOH}) 240,283,309$, $320 \mathrm{sh} \mathrm{nm}(\log \in 4.30,4.02,4.12$, 4.05), an absorption pattern characteristic of a $1,2,9,10$-substituted aporphine (2). The ir spectrum, with peaks at 1660 and $1615 \mathrm{~cm}^{-1}$, was suggestive of an amidic function.

The mass spectrum showed a strong molecular ion, $m / z 353$, and base peak m / z 295 due to loss of $\left(\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CHO}+\mathrm{H}\right)$ from the molecular ion. It followed that the amidic function was in the shape of an N-formyl group.

An important conclusion immediately derived from the nmr spectrum at 500 MHz was that two species were actually present in solution, due to isomerism about the amidic bond. Broad downfield singlets at $\delta 8.27$ and 8.38 represented the N-formyl proton. The integrals of these peaks indicated that the isomers were present in a ratio of 2:1.

The spectra for the two isomers could be clearly differentiated, even though the two isomers could not be separated. While the differences in chemical shifts were minimal in the case of the methoxyl and methylenedioxy signals, they were clearly noticeable for the aromatic protons, with signals at $\delta 6.62,6.77$, and 7.98 for the major isomer 1a, and at δ $6.65,6.75$, and 7.99 for the minor isomer 1b.

The divergences between the two isomers were quite prominent in the aliphatic range. Some of the more salient

1a

2a

1b

2b
($\delta 4.45$) in the minor isomer was clearly evident (see Experimental). With both isomers, a strong nOe could be observed between $\mathrm{H}-7 \alpha$ and $\mathrm{H}-8$.
Turning now to the ${ }^{13} \mathrm{C}$-nmr spectrum of N-formylnornantenine [1], again two sets of peaks were in evidence. Complete assignments as shown in expression $\mathbf{2 a}$ for the major isomer and expression $\mathbf{2 b}$ for the minor component were made possible through hetèroCOSY and COLOC experiments (3).

It is very likely that geometrical isomerism such as presently observed obtains with all amidic aporphines (4). This isomerism was clearly evident in the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum of N-formylnornantenine [1] because of the resolution possible at 500 MHz .

EXPERIMENTAL

Plant material.-C. atjebensis was collected in Somchitra tin mine, Kanchanaburi Prov-
ince, near the Burmese border, in January 1987. A sample was deposited in the herbarium of the Faculty of Pharmaceutical Sciences, Chulalongkorn University.

Plant extraction and alkaloid isola-TION.-The powdered plant material (2.5 kg) was extracted with petroleum ether and then with EtOH . Following solvent evaporation, the EtOH extracts were treated with $10 \% \mathrm{HOAc}$. The aqueous acidic solution was filtered, basified with $\mathrm{NH}_{4} \mathrm{OH}$, and extracted with CHCl_{3}. Evaporation of the organic layer afforded the crude alkaloids (55.4 g). Separation of the alkaloids was achieved by cc on Si gel, using a $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ gradient. Final purification was carried out by cc using Si gel for tlc and also by tlc on Si gel glass plates. The following alkaloids were thus obtained: (-)-norargemonine (313 mg), (-)argemonine (356 mg), (+)-laurotetanine (5 mg), $(+)$-nornantenine (40 mg), and $(+)-\mathrm{N}$-formylnornantenine (93 mg).
(+)- N-FORMYLNORNANTENINE [1].$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5} ; \mathrm{mp} 232^{\circ}(\mathrm{MeOH})$; eims $m / z[\mathrm{M}]^{+}$ 353 (61), 308 (9), 295 (100), 281 (16), 251 (12); hreims $\left[\mathrm{M}^{+}\right.$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~m} / \mathrm{z}$ 353.1263 , found 353.1260 ; calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{4}$ $\mathrm{m} / \mathrm{z} 295.0970$, found 295.0962; ir $\left(\mathrm{CHCl}_{3}\right)$ 3020, 2980, 1660, 1615, $1585 \mathrm{~cm}^{-1}$; uv λ max (MeOH) 240, 283, 309, 320 sh nm ($\log \in 4.30$,
$4.02, \quad 4.12, \quad 4.05) ; \quad[\alpha] \mathrm{D}+315^{\circ} \quad(c=0.13$, $\left.\mathrm{CHCl}_{3}\right) ;[\alpha] \mathrm{D}+292^{\circ}(c=0.13, \mathrm{MeOH})$.

Nmr spectra were obtained at 500 MHz in CDCl_{3} solution. Important nOe's are: for isomer 1a, $\mathrm{H}-3$ to 2 -OMe (10%), 2-OMe to $\mathrm{H}-3$ (18%), $\mathrm{H}-11$ to $\mathrm{l}-\mathrm{OMe}(8 \%)$, 1-OMe to $\mathrm{H}-11(20 \%)$, CHO to $\mathrm{H}-5 \beta$ (2%), $\mathrm{H}-5 \beta$ to CHO (2%), $\mathrm{H}-6$ а to $\mathrm{H}-7 \alpha$ (2%), $\mathrm{H}-7 \alpha$ to $\mathrm{H}-6 \mathrm{a}(5 \%), \mathrm{H}-7 \alpha$ to $\mathrm{H}-8$ (12%), H-8 to $\mathrm{H}-7 \alpha(2 \%), \mathrm{H}-7 \beta$ to $\mathrm{H}-8$ (4%); for isomer $\mathbf{1 b}, \mathrm{H}-3$ to $2-\mathrm{OMe}(9 \%), 2-\mathrm{OMe}$ to H 3 (18%), $\mathrm{H}-11$ to $1-\mathrm{OMe}(5 \%), 1-\mathrm{OMe}$ to $\mathrm{H}-11$ (20%), CHO to $\mathrm{H}-6 \mathrm{a}(3 \%)$, H-6a to $\mathrm{CHO}(1 \%)$, $\mathrm{H}-7 \alpha$ to $\mathrm{H}-\mathrm{Ga}(2 \%), \mathrm{H}-7 \alpha$ to $\mathrm{H}-8(5 \%)$.

ACKNOWLEDGMENT

This research was supported by National Science Foundation grant INT-85 15317.

LITERATURE CITED

1. B. Gözler, M.S. Lantz, and M. Shamma, J. Nat. Prod., 46, 293 (1983).
2. H. Guinaudeau, M. Leboeuf, and A. Cavé, J. Nat. Prod., 51, 389 (1988), and references cited therein.
3. H. Kessler, C. Griesinger, J. Zarbock, and H.R. Looslie, J. Magn. Reson., 57, 331 (1984).
4. F. Roblot, R. Hocquemiller, A. Cavé, and C. Moretti, J. Nat. Prod., 46, 862 (1983).

Received 7 November 1988

[^0]: ${ }^{\text {'Permanent address: Faculty of Pharmaceuti- }}$ cal Sciences, Chulalongkorn University, Bangkok 10500, Thailand.
 ${ }^{2}$ Laboratoire de Pharmacognosie, CEPM, Faculté de Médecine et de Pharmacie, 49045 Angers Cedex, France.
 ${ }^{3}$ B. Tantisewie, personal observation.

